วันพฤหัสบดีที่ 15 ตุลาคม พ.ศ. 2552

ลูกแรดเตรียมพร้อมล่าเหยื่อ

สิ่งที่ได้รับจาการเรียน

วิชา เตรียมฝึกประสบการณวิชาชีพ 3


1. มีความรับผิดชอบ ในการเรียนวิชาเตรียมฝึกประการณ์วิชาชีพทำให้เรามีความรับผิดชอบ มีความตรงต่อเวลา ซึ่งมีผลดีกับตัวเราเอง เพราะตัวเราเองก็ต้องออกไปฝึกงานภายนอกถ้าเรามีความรับผิดชอบ มีความตรงต่อเวลา ก็จะทำให้เราสามารถทำงานร่วมกับผู้อื่นได้ และเป็นที่น่านับถือของคนในสังคมนั้นๆ



2. สามารถนำความรู้ที่เรียนมาแก้ไขปัญหาเฉพาะหน้าที่เกิดขึ้นในขณะการปฏิบัติ งาน เมื่อถึงเวลาที่เราต้องออกไปฝึกงานนอกสถานที่เราต้องมีความรู้ เพื่อประโยชน์กับตัวเราเอง และเราต้องทำให้คนในสังคมนั้นเห็นถึงความสามารถของตัวเราเอง เพื่อทำให้สังคมนั้นยอมรับในตัวเรา



3. แต่งกายสุภาพเรียบร้อย ทำให้บุคลิกภาพของเราดูดี สะอาด เรียบร้อย เมื่อเราออกสังคม ก็จะทำให้บุคคลภายนอกมองเราในแง่บวก ทำให้มีคนชื่นชม ไม่โดนดูถูกหรือโดนว่ากล่าวนินทา และอีกประการหนึ่ง เวลาเราไปสมัครงานก็จะทำให้เราเป็นคนน่านับถือได้ เชื่อถือได้



4. รู้จักการทำงานเป็นทีม ทำเราเป็นคนมีความสามัคคี รู้จักการอยู่รวมกันเป็นกลุ่ม รู้จักการพึ่งพาอาศัยกัน รู้จักเพื่อนใหม่ๆ ซึ่งเป็นผลดีกับตัวเรา คือ สามารถทำให้เราทำงานร่วมกับผู้อื่นได้ และและชีวิตอยู่ในสังคมอย่างสงบสุข และไม่ทำให้บุคคลอื่นเดือดร้อน



5. เป็นคนมีระเบียบวินัย ถ้าเรามีระเบียบวินัยในการทำงาน เราก็สามารถอยู่รวมกับผู้อื่นได้อย่างมีความสุข และเมื่อเราออกไปฝึกงานข้างนอกก็จะทำให้เราทำงานอย่างเป็นระเบียบและปฏิบัติตามกฎระเบียบของที่ทำงานนั้นๆได้อย่างถูกต้อง


วันเสาร์ที่ 3 ตุลาคม พ.ศ. 2552

DTS 11-16-09-2552

สรุปการเรียนการสอน

เรื่อง
การค้นหาข้อมูล (Searching)


การค้นหา คือ การใช้วิธีการค้นหากับโครงสร้างข้อมูล เพื่ือดูว่าข้อมูลตัวที่ต้องการถูกเก็บอยู่ในโครงสร้างแล้วหรือยัง

การค้นหาข้อมูล searching แบ่งเป็น 2 ประเภท
1.การค้นหาข้อมูลแบบภายใน
2.การค้นหาข้อมูลแบบภายนอก

1. การค้นหาแบบเชิงเส้นหรือการค้นหาตามลำดับ (Linear) ใช้ กับข้อมูลที่ยังไม่ได้เรียงลำดับ มีวิธีโดยการนำข้อมูลที่ต้องการหามาเปรียบเทียบกับข้อมูลในแถวลำดับ ถ้าค่าข้อมูลที่ต้องการหาไม่ตรงกับค่าข้อมูลในแถวลำดับก็ทำการค้นหาไป เรื่อยๆ จนเจอค่าข้อมูลที่ต้องการจึงจะหยุดการค้นหา หรือจะหยุดการค้นหาก็ต่อเมื่อไม่พบค่าข้อมูล

2. การค้นหาแบบเซนทินัล (Sentinel) มี ลักษณะเช่นเดียวกับการค้นหาแบบเชิงเส้น แต่การค้นหานั้นเป็นการเปรียบเทียบค่าน้อยกว่าการค้นหาแบบเชิงเส้น มีวิธีโดยการเพิ่มพื้นที่ที่เก็บข้อมูลอีก 1 ที่ แล้วนำข้อมูลที่ต้องการค้นหาไปใส่ไว้ที่ต้น หรือท้ายอาเรย์ แล้วทำการตรวจสอบ ถ้าตำแหน่งที่พบเท่ากับ n-1 แสดงว่าหาข้อมูลไม่พบ นอกนั้นถือว่าพบข้อมูลที่ต้องการค้นหา

การค้นหาแบบไบนารี (Binary Search) จะ ใช้กับข้อมูลที่เรียงลำดับแล้วเท่านั้น โดยแบ่งข้อมูลออกเป็นสองส่วน การค้นหาเป็นวิธีค้นหาที่ไปยังค่ากลางเพื่อตรวจสอบหรือเปรียบเทียบว่าใช่ ข้อมูลที่ต้องค้นหาหรือไม่ และจะละทิ้งข้อมูลส่วนหน้าหรือส่วนหลังขึ้นอยู่กับว่าข้อมูลที่ต้องการค้นหา มีค่ามากกว่า หรือน้อยกว่าข้อมูลค่ากลาง

วันอาทิตย์ที่ 13 กันยายน พ.ศ. 2552

DTS 10-09-09-2552

สรุปการเรียน
เรื่อง กราฟ (ต่อ)และ Sorting


กราฟ(ต่อ)
การท่องไปในกราฟการท่องไปในกราฟ (graph traversal) คือกระบวนการเข้าไปเยือนโหนดในกราฟ โดยมีหลักในการทำงานคือ แต่ละโหนดจะถูกเยือนเพียงครั้งเดียว สำหรับการท่องไปในทรีเพื่อเยือนแต่ละโหนดนั้นจะมีเส้นทางเดียวแต่ในกราฟระหว่างโหนดอาจจะมีหลายเส้นทาง ดังนั้นเพื่อป้องกันการท่องไปในเส้นทางที่ซ้ำเดิมจึงจำเป็นต้องทำเครื่องหมายบริเวณที่ได้เยือนเสร็จเรียบร้อยแล้วเพื่อไม่ให้เข้าไปเยือนอีก สำหรับเทคนิคการท่องไปในกราฟมี 2 แบบดังนี้

1. การท่องแบบกว้าง (Breadth First Traversal)วิธีนี้ทำโดยเลือกโหนดที่เป็นจุดเริ่มต้น ต่อมาให้เยือนโหนดอื่นที่ใกล้กันกับโหนดเริ่มต้นทีละระดับจนกระทั่งเยือนหมดทุกโหนดในกราฟ
2. การท่องแบบลึก (Depth First Traversal)การทำงานคล้ายกับการท่องทีละระดับของทรี โดยกำหนดเริ่มต้นที่โหนดแรกและเยือนโหนดถัดไปตามแนววิถีนั้นจนกระทั่งนำไปสู่ปลายวิถีนั้น จากนั้นย้อนกลับ(backtrack) ตามแนววิถีเดิมนั้น จนกระทั่งสามารถดำเนินการต่อเนื่องเข้าสู่แนววิถีอื่น ๆ เพื่อเยือนโหนดอื่น ๆ ต่อไปจนครบทุกโหนด


Sorting

การเรียงลำดับ (sorting) เป็นการจัดให้เป็นระเบียบมีแบบแผน ช่วยให้การค้นหาสิ่งของหรือข้อมูล ซึ่งจะสามารถกระทำได้รวดเร็วและมีประสิทธิภาพ เช่น การค้นหาความหมายของคำในพจนานุกรม ทำได้ค่อนข้างง่ายและรวดเร็วเนื่องจากมีการเรียงลำดับคำตามตัวอักษรไว้อย่างมีระบบและเป็นระเบียบ หรือ การค้นหาหมายเลขโทรศัพท์ในสมุดโทรศัพท์ ซึ่งมีการเรียงลำดับ ตามชื่อและชื่อสกุลของเจ้าของโทรศัพท์ไว้ ทำให้สามารถค้นหา หมายเลขโทรศัพท์ของคนที่ต้องการได้อย่างรวดเร็ว เป็นต้น

การเรียงลำดับอย่างมีประสิทธิภาพหลักเกณฑ์ในการพิจารณาเพื่อเลือกวิธีการเรียงลำดับที่ดี และเหมาะสมกับระบบงาน เพื่อให้ประสิทธิภาพในการทำงานสูงสุด ควรจะต้องคำนึงถึงสิ่งต่าง ๆ ดังต่อไปนี้
(1) เวลาและแรงงานที่ต้องใช้ในการเขียนโปรแกรม
(2) เวลาที่เครื่องคอมพิวเตอร์ต้องใช้ในการทำงานตามโปรแกรมที่เขียน
(3) จำนวนเนื้อที่ในหน่วยความจำหลักมีเพียงพอหรือไม่


วิธีการเรียงลำดับเนื่องจากมีวิธีการมากมายที่สามารถใช้ในการเรียงลำดับข้อมูลได้ บางวิธีก็มีขั้นตอนการจัดเรียงเป็นแบบง่าย ๆ ตรงไปตรงมา แต่ใช้เวลาในการจัดเรียงลำดับนาน และบางวิธีก็มีขั้นตอนในการจัดเรียงลำดับแบบซับซ้อนยุ่งยากแต่ใช้เวลาในการจัดเรียงไม่นานนัก ดังนั้นจึงควรศึกษาวิธีการจัดเรียงลำดับด้วยวิธีการต่าง ๆ เพื่อเลือกใช้วิธีการที่ดีและเหมาะสมกับระบบงานนั้นที่สุด วิธีการเรียงลำดับสามารถแบ่งออกเป็น
2 ประเภท คือ

(1)การเรียงลำดับแบบภายใน (internal sorting)เป็นการเรียงลำดับที่ข้อมูลทั้งหมดต้องอยู่ในหน่วยความจำหลัก เวลาที่ใช้ในการเรียงลำดับจะคำนึงถึงเวลาที่ใช้ในการเปรียบเทียบและเลื่อนข้อมูลภายในความจำหลัก
(2) การเรียงลำดับแบบภายนอก(external sorting) เป็นการเรียงลำดับข้อมูลที่เก็บอยู่ในหน่วยความจำสำรอง ซึ่งเป็นการเรียงลำดับข้อมูลในแฟ้มข้อมูล (file) เวลาที่ใช้ในการเรียงลำดับต้องคำนึงถึงเวลาที่เสียไประหว่าง
การถ่ายเทข้อมูลจากหน่วยความจำหลักและหน่วยความจำสำรองนอกเหนือจากเวลาที่ใช้ในการเรียงลำดับข้อมูลแบบภายใน


การเรียงลำดับแบบเลือก (selection sort)ทำการเลือกข้อมูลมาเก็บในตำแหน่งที่ ข้อมูลนั้นควรจะอยู่ทีละตัว โดยทำการค้นหาข้อมูลนั้นในแต่ละรอบแบบเรียงลำดับถ้าเป็นการเรียงลำดับจากน้อยไปมาก
1. ในรอบแรกจะทำการค้นหาข้อมูลตัวที่มีค่าน้อยที่สุดมาเก็บไว้ที่ตำแหน่งที่ 1
2. ในรอบที่สองนำข้อมูลตัวที่มีค่าน้อยรองลงมาไปเก็บไว้ที่ตำแหน่งที่สอง
3. ทำเช่นนี้ไปเรื่อย ๆ จนกระทั่งครบทุกค่าในที่สุดจะได้ข้อมูลเรียงลำดับจากน้อยไปมากตามที่ต้องการ
ในการเรียงลำดับข้อมูลแบบภายใน


การเรียงลำดับแบบฟอง (Bubble Sort)เป็นวิธีการเรียงลำดับที่มีการเปรียบเทียบข้อมูลในตำแหน่งที่อยู่ติดกัน
1. ถ้าข้อมูลทั้งสองไม่อยู่ในลำดับที่ถูกต้องให้สลับตำแหน่งที่อยู่กัน
2. ถ้าเป็นการเรียงลำดับจากน้อยไปมากให้นำข้อมูลตัวที่มีค่าน้อยกว่าอยู่ในตำแหน่งก่อนข้อมูลที่มีค่ามาก ถ้าเป็นการเรียงลำดับจากมากไปน้อยให้นำข้อมูล ตัวที่มีค่ามากกว่าอยู่ในตำแหน่งก่อนข้อมูลที่มีค่าน้อย


การเรียงลำดับแบบฐาน (radix sort)เป็นการเรียงลำดับโดยการพิจารณาข้อมูลทีละหลัก1. เริ่มพิจารณาจากหลักที่มีค่าน้อยที่สุดก่อน นั่นคือถ้าข้อมูลเป็นเลขจำนวนเต็มจะพิจารณาหลักหน่วยก่อน2. การจัดเรียงจะนำข้อมูลเข้ามาทีละตัว แล้วนำไปเก็บไว้ที่ซึ่งจัดไว้สำหรับค่านั้น เป็นกลุ่ม ๆตามลำดับการเข้ามา3. ในแต่ละรอบเมื่อจัดกลุ่มเรียบร้อยแล้ว ให้รวบรวมข้อมูลจากทุกกลุ่มเข้าด้วยกัน โดยเริ่มเรียงจากกลุ่มที่มีค่าน้อยที่สุดก่อนแล้วเรียงไปเรื่อย ๆ จนหมดทุกกลุ่ม4. ในรอบต่อไปนำข้อมูลทั้งหมดที่ได้จัดเรียงในหลักหน่วยเรียบร้อยแล้วมาพิจารณาจัดเรียงในหลักสิบต่อไป ทำเช่นนี้ไปเรื่อย ๆ จนกระทั่งครบทุกหลักจะได้ข้อมูลที่เรียงลำดับจากน้อยไปมากตามต้องการ

วันอังคารที่ 8 กันยายน พ.ศ. 2552

DTS 09-02-09-2552

สรุปการเรียน
เรื่อง ทรี(ต่อ)และกราฟ
ทรี(ต่อ)

เอ็กซ์เพรสชันทรี (Expression Tree)เป็นการนำเอาโครงสร้างทรีไปใช้เก็บนิพจน์ทางคณิตศาสตร์โดยเป็นไบนารีทรี ซึ่งแต่ละโหนดเก็บตัวดำเนินการ (Operator) และและตัวถูกดำเนินการ(Operand) ของนิพจน์คณิตศาสตร์นั้น ๆ ไว้ หรืออาจจะเก็บค่านิพจน์ทางตรรกะ (Logical Expression)นิพจน์เหล่านี้เมื่อแทนในทรีต้องคำนึงลำดับขั้นตอนในการคำนวณตามความสำคัญของเครื่องหมายด้วยโดยมีความสำคัญตามลำดับดังนี้
- ฟังก์ชัน
- วงเล็บ
- ยกกำลัง
- เครื่องหมายหน้าเลขจำนวน (unary)
- คูณ หรือ หาร
- บวก หรือ ลบ
- ถ้ามีเครื่องหมายที่ระดับเดียวกันให้ทำจากซ้ายไปขวา


ไบนารีเซิร์ชทรี (Binary Search Tree)เป็นไบนารีทรีที่มีคุณสมบัติที่ว่าทุก ๆ โหนดในทรี ค่าของโหนดรากมีค่ามากกว่าค่าของทุกโหนดในทรีย่อยทางซ้าย และมีค่าน้อยกว่าหรือเท่ากับค่าของทุกโหนดในทรีย่อยทางขวาและในแต่ละทรีย่อยก็มี คุณสมบัติเช่นเดียวกัน

การเพิ่มโหนดในไบนารีเซิร์ซทรี ถ้าทรีว่างโหนดที่เพิ่มจะเป็นโหนดราก ถ้าทรีไม่ว่างต้องทำการตรวจสอบโหนดใหม่ว่ามีค่ามากกว่าหรือน้อยกว่าค่าที่โหนดรากถ้ามีค่ามากกว่าหรือเท่ากันจะนำโหนดที่เพิ่มไปเพิ่มยังทรีย่อยด้านขวา แต่ถ้ามีค่าน้อยกว่าจะนำไปเพิ่มที่ทรีย่อยด้านซ้าย

การดึงโหนดในไบนารีเซิร์ซทรี ต้องทำการค้นหาตำแหน่งที่ต้องการดึงก่อนว่าอยู่ตำแหน่งใดแล้วต้องรู้ด้วยว่าโหนดแม่ของโหนดนั้นคือโหนดไหน จึงจะสามารถทำการดึงได้ แต่เมื่อดึงโหนดออกแล้ว ทรีนั้นต้องคงสภาพเนไบนารีเซิร์ซทรีเหมือนเดิม

ขั้นตอนวิธีดึงโหนดออกอาจแยกพิจารณาได้ 3 กรณีดังต่อไปนี้
ก. กรณีโหนดที่จะดึงออกเป็นโหนดใบการดึงโหนดใบออกในกรณีนี้ทำได้ง่ายที่สุดโดย การดึงโหนดนั้นออกได้ทันที เนื่องจากไม่กระทบกับโหนดอื่นมากนัก วิธีการก็คือให้ค่าในลิงค์ฟิลด์ของโหนดแม่ซึ่งเก็บที่อยู่ของโหนดที่ต้องการ ดึงออกให้มีค่าเป็น Null
ข. กรณีโหนดที่ดึงออกมีเฉพาะทรีย่อยทางซ้ายหรือทรีย่อยทางขวาเพียงด้านใดด้าน หนึ่ง วิธีการดึงโหนดนี้ออกสามารถใช้วิธีการเดียวกับการดึงโหนดออกจากลิงค์ลิสต์ โดยให้โหนดแม่ของโหนดที่จะดึงออกชี้ไปยังโหนดลูกของโหนดนั้นแทน
ค. กรณีโหนดที่ดึงออกมีทั้งทรีย่อยทางซ้ายและทรีย่อยทางขวาต้องเลือกโหนดมาแทน โหนดที่ถูกดึงออก โดยอาจจะเลือกมาจากทรีย่อยทางซ้ายหรือทรีย่อยทางขวาก็ได้- ถ้าโหนดที่มาแทนที่เป็นโหนดที่เลือกจากทรีย่อยทางซ้ายต้องเลือกโหนดที่มีค่ามากที่สุดในทรีย่อยทางซ้ายนั้น- ถ้าโหนดที่จะมาแทนที่เป็นโหนดที่เลือกมาจากทรีย่อยทางขวา ต้องเลือกโหนดที่มีค่าน้อยที่สุดในทรีย่อยทางขวานั้น

กราฟ (Graph)

กราฟ (Graph) เป็นโครงสร้างข้อมูลแบบไม่ใช่เชิงเส้น อีกชนิดหนึ่ง กราฟเป็นโครงสร้างข้อมูลที่มีการนำไปใช้ในงานที่เกี่ยวข้องกับการแก้ปัญหาที่ค่อนข้างซับซ้อนเช่น การวางข่าย งานคอมพิวเตอร์ การวิเคราะห์เส้นทางวิกฤติ และปัญหาเส้นทางที่สั้นที่สุด เป็นต้น

นิยามของกราฟกราฟ เป็นโครงสร้างข้อมูลแบบไม่ใช่เชิงเส้นที่ประกอบ ด้วยกลุ่มของสิ่งสองสิ่งคือ
(1) โหนด (Nodes) หรือ เวอร์เทกซ์(Vertexes)
(2) เส้นเชื่อมระหว่างโหนด เรียก เอ็จ (Edges)
กราฟที่มีเอ็จเชื่อมระหว่างโหนดสองโหนดถ้าเอ็จไม่มีลำดับ ความสัมพันธ์จะเรียกกราฟนั้นว่ากราฟแบบไม่มีทิศทาง (Undirected Graphs)และถ้ากราฟนั้นมีเอ็จที่มีลำดับความสัมพันธ์หรือมีทิศทางกำกับด้วยเรียกกราฟนั้นว่า กราฟแบบมีทิศทาง(Directed Graphs)บางครั้งเรียกว่า ไดกราฟ (Digraph)ถ้าต้องการอ้างถึงเอ็จแต่ละเส้นสามารถเขียนชื่อเอ็จกำกับไว้ก็ได้


การแทนกราฟในหน่วยความจำ สิ่งที่ต้องการจัดเก็บก็คือ เอ็จ ซึ่งเป็นเส้นเชื่อมระหว่างโหนดสองโหนด วิธีที่ง่ายคือ การเก็บเอ็จในแถวลำดับ 2 มิติ แต่จะเป็นการเปลืองเนื้อที่เพราะบางเอ็จมีการเก็บซ้ำ แต่สามารถแก้ปัญหานี้ได้โดยมิติแรกเก็บโหนดต่างๆ แล้วใช้พอยเตอร์ชี้ไปยังความสัมพันธ์กับโหนดในมิติ 2 แต่เป็นวิธีที่ยุ่งยาก ไม่เหมาะกับกราฟที่มีการเปลี่ยนแปลงตลอดเวลา

การท่องไปในกราฟ (graph traversal) คือกระบวนการเข้าไปเยือนโหนดในกราฟ โดยมีหลักในการ
ทำงานคือ แต่ละโหนดจะถูกเยือนเพียงครั้งเดียว สำหรับการท่องไปในทรีเพื่อเยือนแต่ละโหนดนั้นจะมีเส้นทางเดียวแต่ในกราฟระหว่างโหนดอาจจะมีหลายเส้นทาง ดังนั้นเพื่อป้องกันการท่องไปในเส้นทางที่ซ้ำเดิมจึงจำเป็นต้องทำเครื่องหมายบริเวณที่ได้เยือนเสร็จเรียบร้อยแล้วเพื่อไม่ให้เข้าไปเยือนอีก สำหรับเทคนิคการท่องไปในกราฟมี 2 แบบดังนี้

1. การท่องแบบกว้าง (Breadth First Traversal)วิธีนี้ทำโดยเลือกโหนดที่เป็นจุดเริ่มต้น ต่อมาให้เยือนโหนด
อื่นที่ใกล้กันกับโหนดเริ่มต้นทีละระดับจนกระทั่งเยือนหมดทุกโหนดในกราฟ

2. การท่องแบบลึก (Depth First Traversal)การทำงานคล้ายกับการท่องทีละระดับของทรี โดยกำหนดเริ่มต้นที่โหนดแรกและเยือนโหนดถัดไปตามแนววิถีนั้นจนกระทั่งนำไปสู่ปลายวิถีนั้น จากนั้นย้อนกลับ (backtrack) ตามแนววิถีเดิมนั้น จนกระทั่งสามารถดำเนินการต่อเนื่องเข้าสู่แนววิถีอื่น ๆ เพื่อเยือนโหนดอื่น ๆ ต่อไปจนครบทุกโหนด

วันเสาร์ที่ 29 สิงหาคม พ.ศ. 2552

DTS 08-26-08-2552

สรุปการเรียน


เรื่อง ทรี


ทรี (Tree) เป็นโครงสร้างข้อมูลที่ความสัมพันธ์ระหว่าง โหนดจะมีความสัมพันธ์ลดหลั่นกันเป็นลำดับชั้น (Hierarchical Relationship)ได้มีการนำรูปแบบทรีไปประยุกต์ใช้ในงานต่าง ๆ อย่างแพร่หลาย ส่วนมากจะใช้สำหรับแสดงความสัมพันธ์ระหว่างข้อมูล แต่ละโหนดจะมีความสัมพันธ์กับโหนดในระดับที่ต่ำลงมา หนึ่งระดับได้หลาย ๆ โหนด เรียกโหนดดังกล่าวว่า โหนดแม่ (Parent orMother Node)โหนดที่อยู่ต่ำกว่าโหนดแม่อยู่หนึ่งระดับเรียกว่า โหนดลูก (Child or Son Node)โหนดที่อยู่ในระดับสูงสุดและไม่มีโหนดแม่เรียกว่า โหนดราก (Root Node)


นิยามของทรี
1. นิยามทรีด้วยนิยามของกราฟทรี คือ กราฟที่ต่อเนื่องโดยไม่มีวงจรปิด (loop) ในโครงสร้าง โหนดสองโหนดใด ๆ ในทรีต้องมีทางติดต่อกันทางเดียวเท่านั้น และทรีที่มี N โหนด ต้องมีกิ่งทั้งหมด N-1 เส้น
2. นิยามทรีด้วยรูปแบบรีเคอร์ซีฟทรีประกอบด้วยสมาชิกที่เรียกว่าโหนด โดยที่ ถ้าว่าง ไม่มีโหนดใด ๆ เรียกว่านัลทรี (Null Tree) และถ้ามีโหนดหนึ่งเป็นโหนดราก ส่วนที่เหลือจะแบ่งเป็นทรีย่อย (Sub Tree)T1, T2, T3,…,Tk โดยที่ k>=0 และทรีย่อยต้องมีคุณสมบัติเป็นทรี


นิยามที่เกี่ยวข้องกับทรี

1. ฟอร์เรสต์ (Forest)หมายถึง กลุ่มของทรีที่เกิดจากการเอาโหนดรากของทรีออกหรือ เซตของทรีที่แยกจากกัน(Disjoint Trees)
2. ทรีที่มีแบบแผน (Ordered Tree)หมายถึง ทรีที่โหนดต่าง ๆ ในทรีนั้นมีความสัมพันธ์ที่แน่นอน เช่น ไปทางขวาไปทางซ้าย เป็นต้น
3. ทรีคล้าย (Similar Tree) คือทรีที่มีโครงสร้างเหมือนกัน หรือทรีที่มีรูปร่างของทรีเหมือนกัน โดยไม่คำนึงถึงข้อมูลที่อยู่ในแต่ละโหนด
4. ทรีเหมือน (Equivalent Tree) คือทรีที่เหมือนกันโดยสมบูรณ์ โดยต้องเป็นทรีที่คล้ายกันและแต่ละโหนดในตำแหน่งเดียวกันมีข้อมูลเหมือนกัน
5. กำลัง (Degree) หมายถึงจำนวนทรีย่อยของโหนด นั้น ๆ
6. ระดับของโหนด (Level of Node) คือระยะทางในแนวดิ่งของโหนดนั้น ๆ ที่อยู่ห่างจากโหนดราก เมื่อกำหนดให้ โหนดรากของทรีนั้นอยู่ระดับ 1และกิ่งแต่ละกิ่งมีความเท่ากันหมด คือ ยาวเท่ากับ 1หน่วย ซึ่งระดับของโหนดจะเท่ากับจำนวนกิ่งที่น้อยที่สุดจากโหนดรากไปยังโหนดใด ๆ บวกด้วย 1และจำนวนเส้นทางตามแนวดิ่งของโหนดใด ๆ ซึ่งห่างจากโหนดราก เรียกว่า ความสูง (Height) หรือความลึก (Depth)

การแทนที่ทรีในหน่วยความจำหลัก คือ การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก แต่ละโหนดต้องมีลิงค์ฟิลด์เพื่อเก็บที่อยู่ของโหนดลูกต่าง ๆ นั่นคือจำนวน ลิงค์ฟิลด์ของแต่ละโหนดขึ้นอยู่กับจำนวนของโหนดลูกการแทนที่ทรี ซึ่งแต่ละโหนดมีจำนวนลิงค์ฟิลด์ไม่เท่ากัน ทำให้ยากต่อการปฏิบัติการ วิธีการแทนที่ที่ง่ายที่สุดคือ ทำให้แต่ละโหนดมี จำนวนลิงค์ฟิลด์เท่ากัน โดยอาจใช้วิธีการต่อไปนี
1. โหนดแต่ละโหนดเก็บพอยเตอร์ชี้ไปยังโหนดลูกทุกโหนด การแทนที่ทรีด้วยวิธีนี้ จะให้จำนวนฟิลด์ในแต่ละโหนดเท่ากันโดยกำหนดให้มีขนาดเท่ากับจำนวนโหนดลูกของโหนดที่มีลูกมากที่สุด โหนดใดไม่มีโหลดลูกก็ให้ค่าพอยเตอร์ในลิงค์ฟิลด์นั้นมีค่าเป็น Nullและให้ลิงค์ฟิลด์แรกเก็บค่าพอยเตอร์ชี้ไปยังโหนด ลูกลำดับที่หนึ่ง ลิงค์ฟิลด์ที่สองเก็บค่าพอยเตอร์ชี้ไปยังโหนดลูกลำดับที่สอง และลิงค์ฟิลด์อื่นเก็บค่าพอยเตอร์ของโหนดลูกลำดับ ถัดไปเรื่อย ๆ การแทนทรีด้วยโหนดขนาดเท่ากันค่อนข้างใช้เนื้อที่จำนวนมาก เนื่องจากแต่ละโหนดมีจำนวนโหนดลูกไม่เท่ากันหรือบางโหนดไม่มีโหนดลูกเลยถ้าเป็นทรีที่แต่ละโหนดมีจำนวนโหนดลูกที่แตกต่างกันมาก จะเป็นการสิ้นเปลืองเนื้อที่ในหน่วยความจำโดยเปล่าประโยชน์
2. แทนทรีด้วยไบนารีทรีเป็นวิธีแก้ปัญหาเพื่อลดการ สิ้นเปลืองเนื้อที่ในหน่วยความจำก็คือกำหนดลิงค์ฟิลด์ให้มีจำนวนน้อยที่สุดเท่าที่จำเป็นเท่านั้นโดยกำหนดให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์สองลิงค์ฟิลด์-ลิงค์ฟิลด์แรกเก็บที่อยู่ของโหนดลูกคนโต-ลิงค์ฟิลด์ที่สองเก็บที่อยู่ของโหนดพี่น้องที่เป็นโหนดถัดไปโหนดใดไม่มีโหนดลูกหรือไม่มีโหนดพี่น้องให้ค่าพอยน์เตอร์ในลิงค์ฟิลด์มีค่าเป็น Null
ไบนารีทรีที่ทุก ๆ โหนดมีทรีย่อยทางซ้ายและทรีย่อยทางขวา ยกเว้นโหนดใบ และโหนดใบทุกโหนดจะต้องอยู่ที่ระดับเดียวกันเรียกว่า ไบนารีทรีแบบสมบูรณ์ (complete binary tree)

การแปลงทรีทั่วไปให้เป็นไบนารีทรีขั้นตอนการแปลงทรีทั่วๆ ไปให้เป็นไบนารีทรี มีลำดับขั้นตอนการแปลง ดังต่อไปนี้

1. ให้โหนดแม่ชี้ไปยังโหนดลูกคนโต แล้วลบความสัมพันธ์ ระหว่างโหนดแม่และโหนดลูกอื่น ๆ

2. ให้เชื่อมความสัมพันธ์ระหว่างโหนดพี่น้อง

3. จับให้ทรีย่อยทางขวาเอียงลงมา 45 องศา

การท่องไปในไบนารีทรี ปฏิบัติการที่สำคัญในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุก ๆโหนดในทรี ซึ่งวิธีการท่องเข้าไปต้องเป็นไปอย่างมีระบบแบบแผน สามารถเยือนโหนดทุก ๆ โหนด ๆ ละหนึ่งครั้งวิธีการท่องไปนั้นมีด้วยกันหลายแบบแล้วแต่ว่าต้องการลำดับขั้นตอนการเยือนอย่างไร โหนดที่ถูกเยือนอาจเป็น
โหนดแม่ (แทนด้วย N)
ทรีย่อยทางซ้าย (แทนด้วย L)
หรือทรีย่อยทางขวา (แทนด้วย R)


วิธีการท่องเข้าไปในทรี 6 วิธี คือ NLR LNR LRN NRL RNL และ RLN แต่วิธีการท่องเข้าไปไบนารีทรีที่นิยมใช้กันมากเป็นการท่องจากซ้ายไปขวา 3 แบบแรกเท่านั้นคือ NLR LNR และ LRN ซึ่งลักษณะการนิยามเป็นนิยามแบบ รีเคอร์ซีฟ(Recursive) ซึ่งขั้นตอนการท่องไปในแต่ละแบบมีดังนี1. การท่องไปแบบพรีออร์เดอร์(Preorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ ในทรีด้วยวิธีNLR มีขั้นตอนการเดินดังต่อไปนี้(1) เยือนโหนดราก(2) ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์(3) ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
2.การท่องไปแบบอินออร์เดอร์(Inorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LNRมีขั้นตอนการเดินดังต่อไปนี้(1) ท่องไปในทรีย่อยทางซ้ายแบบอินออร์เดอร์(2) เยือนโหนดราก
3. การท่องไปแบบโพสออร์เดอร์(Postorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LRN มีขั้นตอนการเดินดังต่อไปนี้(1) ท่องไปในทรีย่อยทางซ้ายแบบโพสต์ออร์เดอร์(2) ท่องไปในทรีย่อยทางขวาแบบโพสต์ออร์เดอร์(3) เยือนโหนดราก(3) ท่องไปในทรีย่อยทางขวาแบบอินออร์เดอร์

วันพฤหัสบดีที่ 13 สิงหาคม พ.ศ. 2552

DTS 07-05-08-2552

สรุปการเรียน

เรื่อง Queue

คิว (Queue) คือ เป็นโครงสร้างข้อมูลแบบเชิงเส้นหรือลิเนียร์ลิสต์ซึ่งการเพิ่มข้อมูลจะกระทำที่ปลายข้างหนึ่งซึ่งเรียกว่าส่วนท้ายหรือเรียร์ (rear) และการนำข้อมูลออกจะกระทำที่ปลายอีกข้างหนึ่งซึ่งเรียกว่า ส่วนหน้า หรือฟรอนต์(front) ลักษณะการทำงานของคิวเป็นลักษณะของการเข้าก่อนออกก่อนหรือที่เรียกว่า FIFO (First In First Out)

การทำงานของคิว คือ การใส่สมาชิกตัวใหม่ลงในคิวเรียกว่า Enqueue ซึ่งมีรูปแบบคือenqueue (queue, newElement) หมายถึง การใส่ข้อมูล newElement ลงไปที่ส่วนเรียร์

การนำสมาชิกออกจากคิว เรียกว่าDequeue ซึ่งมีรูปแบบคือdequeue (queue, element) หมายถึง การนำออกจากส่วนหน้าของคิวและให้ ข้อมูลนั้นกับ element

การแทนที่ข้อมูลของคิว คือ สามารถทำได้ 2 วิธี คือ 1. การแทนที่ข้อมูลของคิวแบบลิงค์ลิสต์ 2. การแทนที่ข้อมูลของคิวแบบอะเรย

การแทนที่ข้อมูลของสแตกแบบลิงค์ลิสต์จะประกอบไปด้วย 2 ส่วน คือ
1. Head Nodeจะประกอบไปด้วย 3 ส่วนคือพอยเตอร์จำนวน 2 ตัว คือ Front และ rear กับจำนวนสมาชิกในคิว
2. Data Node จะประกอบไปด้วยข้อมูล (Data) และพอยเตอร์ที่ชี้ไปยังข้อมูลตัวถัดไป
การดำเนินการเกี่ยวกับคิว

1. Create Queue จัดสรรหน่วยความจำให้แก่ Head Node และ ให้ค่า pointer ทั้ง 2 ตัวมีค่าเป็น null และจำนวนสมาชิกเป็น 0
2.Enqueue คือ การเพิ่มข้อมูลลงไปในคิวโดยการเพิ่มจะเพิ่มจากส่วนท้าย
3.Dequeue คือ การนำข้อมูลในคิวออก จะออกโดยข้อมูลที่เข้าไปตัวแรกจะออกก่อน
4.Queue Front คือ การนำข้อมูลตัวแรกที่เข้าไปในคิวออกมาแสดง
5.Queue Rear คือ การนำข้อมูลตัวสุดท้ายที่เข้ามาในคิวออกมาแสดง
6.Empty Queue คือ เป็นการตรวจสอบว่าคิวนั้นยังคงว่างอยู่หรือไม่
7.Full Queue คือ เป็นการตรวจสอบว่าคิวนั้นเต็มหรือไม่
8.Queue Count คือ เป็นการนับจำนวนข้อมูลที่อยูในคิว ว่ามีจำนวนเท่าไร
9.Destroy Queue คือ การลบข้อมูลที่อยูในคิวทิ้ง

การประยุกต์ใช้คิว
คิวถูกประยุกต์ใช้มากในการจำลองระบบงานธุรกิจ เช่น การให้บริการลูกค้า ต้องวิเคราะห์จำนวนลูกค้าในคิวที่เหมาะสมว่าควรเป็นจำนวนเท่าใด เพื่อให้ลูกค้าเสียเวลาน้อยที่สุด ในด้านคอมพิวเตอร์ ได้นำคิวเข้ามาใช้ คือในระบบปฏิบัติการ (Operation System) ในเรื่องของคิวของงานที่เข้ามาทำงาน (ขอใช้ทรัพยากรระบบของ CPU) จะจัดให้งานที่เข้ามาได้ทำงานตามลำดับความสำคัญ

วันจันทร์ที่ 3 สิงหาคม พ.ศ. 2552

DTS 06-29-07-2552

สรุปบทเรียน

เรื่อง แสตก


การแทนที่ข้อมูลของสแตก สามารถทำได้ 2 วิธี คือ
1. การแทนที่ข้อมูลของสแตกแบบลิงค์ลิสต์
2. การแทนที่ข้อมูลของสแตกแบบอะเรย์

การแทนที่ข้อมูลของสแตกแบบลิงค์ลิสต์จะประกอบไปด้วย 2 ส่วน คือ
1. Head Node จะประกอบไปด้วย 2 ส่วนคือ top pointer และจำนวนสมาชิกในสแตก
2. Data Node จะประกอบไปด้วยข้อมูล (Data) และพอยเตอร์ ที่ชี้ไปยังข้อมูลตัวถัดไป

การดำเนินการเกี่ยวกับสแตก ได้แก่
1. Create Stack จัดสรรหน่วยความจำให้แก่ Head Node และส่งค่าตำแหน่งที่ชี้ไปยัง Head ของสแตกกลับมา
2. Push Stack การเพิ่มข้อมูลลงไปในสแตก
3. Pop Stack การนำข้อมูลบนสุดออกจากสแตก
4. Stack Top เป็นการคัดลอกข้อมูลที่อยู่บนสุดของสแตก โดยไม่มีการลบข้อมูลออกจากสแตก
5.Empty Stack เป็นการตรวจสอบการว่างของสแตก เพื่อไม่ให้เกิดความผิดพลาดในการนำข้อมูลออกจากสแตกที่เรียกว่า Stack Underflow
6. Full Stack เป็นการตรวจสอบว่าสแตกเต็มหรือไม่ เพื่อไม่ให้เกิดความผิดพลาดในการนำข้อมูลเข้าสแตกที่เรียกว่า Stack Overflow
7. Stack Count เป็นการนับจำนวนสมาชิกในสแตก

การประยุกต์ใช้สแตก
- จะใช้ในงานด้านปฏิบัติการของเครื่องคอมพิวเตอร์ที่ขั้นตอนการทำงานต้องการเก็บข่าวสารอันดับแรกสุดไว้ใช้หลังสุด เช่น การทำงานของโปรแกรมแปลภาษานำไปใช้ในเรื่องของการโปรแกรมที่เรียกใช้โปรแกรมย่อย การคำนวณนิพจน์ทางคณิตศาสตร์ และรีเคอร์ชั่น (Recursion)

การคำนวณนิพจน์ทางคณิตศาสตร์
- ในการเขียนนิพจน์ทางคณิตศาสตร์เพื่อการคำนวณ จะต้องคำนึงถึงลำดับความสำคัญของเครื่องหมายสำหรับการคำนวณด้วยโดยทั่วไปนิพจน์ทางคณิตศาสตร์สามารถเขียนได้ 3 รูปแบบ คือ
1. นิพจน์ Infix นิพจน์รูปแบบนี้ operatorจะอยู่ตรงกลางระหว่างตัวถูกดำเนินการ 2 ตัว
2. นิพจน์ Postfix นิพจน์รูปแบบนี้ จะต้องเขียนตัวถูกดำเนินการตัวที่ 1 และ 2 ก่อน แล้วตามด้วย
operator
3. นิพจน์ Prefix นิพจน์รูปแบบนี้ จะต้องเขียน operatorก่อนแล้วตามด้วยตัวถูกดำเนินการตัวที่ 1 และ 2

ขั้นตอนการแปลงจากนิพจน์ Infix เป็นนิพจน์ Postfix

1. อ่านอักขระในนิพจน์ Infix เข้ามาทีละตัว
2. ถ้าเป็นตัวถูกดำเนินการจะถูกย้ายไปเป็นตัวอักษรในนิพจน์ Postfix
3. ถ้าเป็นตัวดำเนินการ จะนำค่าลำดับความสำคัญของตัว ดำเนินการที่อ่านเข้ามาเทียบกับค่าลำดับความสำคัญของตัวดำเนินการที่อยู่บนสุดของสแตก
- ถ้ามีความสำคัญมากกว่า จะถูก push ลงในสแตก
- ถ้ามีความสำคัญน้อยกว่าหรือเท่ากัน จะต้อง pop ตัวดำเนินการที่อยู่ในสแตกขณะนั้นไปเรียงต่อกับตัวอักษรในนิพจน์ Postfix
4. ตัวดำเนินการที่เป็นวงเล็บปิด “)” จะไม่ push ลงในสแตกแต่มีผลให้ตัวดำเนินการอื่น ๆ ถูก pop ออกจากสแตกนำไป เรียงต่อกันในนิพจน์ Postfix จนกว่าจะเจอ “(” จะ popวงเล็บเปิดออกจากสแตกแต่ไม่นำไปเรียงต่อ
5. เมื่อทำการอ่านตัวอักษรในนิพจน์ Infix หมดแล้ว ให้ทำการ Pop ตัวดำเนินการทุกตัวในสแตกนำมาเรียงต่อในนิพจน์Postfix


วันจันทร์ที่ 27 กรกฎาคม พ.ศ. 2552

การบ้าน iostream.h และ stdio.h

เขียนโปรแกรมโดยใช้ stdio.h

#include
main ()
{
char name [20];
char brand [20];
float price [10];
char color [10];
printf ("--------- show room ---------\n");
printf ("name:");
scanf ("%s",& name);
printf ("\nbrand:");
scanf ("%s",& brand);
printf ("\nprice:");
scanf ("%f",& price);
printf ("\ncolor:");
scanf ("%s",& color);
printf ("--------- Thank You ----------\n");
}


เขียนโปรแกรมโดยใช้ iostream.h

#include
main ()
{
char name [20];
char brand [20];
float price [10];
char color [10];
cout <<"------------show room ------------\n";
cout <<"name:";
cin >>name;
cout <<"\nbrand:";
cin >> brand;
cout << "\nprice:";
cin >>price;
cout <<"\ncolor:";
cin >>color;
cout<< "----------------Thank You--------------"; }

DTS 05-22-07-2552

สรุปการเรียน
เรื่อง Linked List และ Stack


Linked List แบบซับซ้อน
1.Circular Linked Listหมายถึง ลิงค์ลิสต์ที่โหนดสุดท้ายสามารถวกกลับมาที่โหนดแรกได้
ใช้ประโยชน์เมื่อต้องการให้ข้อมูลมีลักษณะเป็นวนรอบหรือลูป โดยแต่ละขั้นตอนการทำงานภายในลูป จะมีการย้ายตำแหน่งของพอยน์เตอร์ไปยังโหนดถัดไป
2.Double Linked List หมายถึง ลิงค์ลิสต์ที่ทุกโหนดสามารถวกกลับมาที่โหนดก่อนหน้าของตนเองได้ ประกอบด้วยส่วนของ Info และ พอยน์เตอร์ที่ชี้ไป 2 ทิศทาง คือ ชี้ไปยังโหนดถัดไป และชี้ไปยังโหนดก่อนหน้า ดังนั้นเราจึงสามารถทำการอ่านข้อมูลได้ 2 วิธี คือ การอ่านไปข้างหน้า และอ่านไปทางข้างหลัง


Stack

สแตก (Stack) เป็นโครงสร้างข้อมูลที่ข้อมูลแบบลิเนียร์ลิสต์ ที่มีคุณสมบัติที่ว่า การเพิ่มหรือลบข้อมูลในสแตก จะกระทำที่ ปลายข้างเดียวกัน ซึ่งเรียกว่า Top ของสแตก (TopOf Stack) และ ลักษณะที่สำคัญของสแตกคือ ข้อมูลที่ใส่หลังสุดจะถูกนำออกมา จากสแตกเป็นลำดับแรกสุด เรียกคุณสมบัตินี้ว่าLIFO (Last In First Out)

การดำเนินงานพื้นฐานของสแตก

การทำงานต่าง ๆ ของสแตกจะกระทำที่ปลายข้างหนึ่งของ สแตกเท่านั้น ดังนั้นจะต้องมีตัวชี้ตำแหน่งข้อมูลบนสุดของสแตกด้วยการทำงานของสแตกจะประกอบด้วยกระบวนการ 3 กระบวนการที่สำคัญ คือ

1.Push คือ การนำข้อมูลใส่ลงไปในสแตกเช่น สแตก s ต้องการใส่ข้อมูล i ในสแตก จะได้push (s,i) คือ ใส่ข้อมูล i ลงไปที่ทอปของสแตกในการเพิ่มข้อมูลลงในสแตก จะต้องทำการตรวจสอบว่าสแตก เต็มหรือไม่ ถ้าไม่เต็มก็สามารถเพิ่มข้อมูลลงไปในสแตกได้ แล้วปรับตัวชี้ตำแหน่งให้ไปชี้ที่ตำแหน่งข้อมูลใหม่ ถ้าสแตกเต็ม (Stack Overflow) ก็จะไม่สามารถเพิ่มข้อมูลเข้าไปในสแตกได้อีก

2. Pop คือ การนำข้อมูลออกจากส่วนบนสุดของสแตกเช่น ต้องการนำข้อมูลออกจากสแตก sไปไว้ที่ตัวแปร iจะได้ i = pop (s)การนำข้อมูลออกจากสแตก ถ้าสแตกมีสมาชิกเพียง 1ตัว แล้วนำสมาชิกออกจากสแตก จะเกิดสภาวะสแตกว่าง (Stack Empty) คือ ไม่มีสมาชิกอยู่ในสแตกเลยแต่ถ้าไม่มีสมาชิกในสแตก แล้วทำการ pop สแตก จะทำให้ เกิดความผิดพลาดที่เรียกว่า Stack Underflowเพราะฉะนั้นก่อนนำข้อมูลออกจากสแตกจะต้องตรวจสอบ ก่อนว่าสแตกว่างหรือเปล่า จึงจะนำข้อมูลออกจากสแตกได้และ ปรับตัวชี้ตำแหน่งให้ไปชี้ตำแหน่งของข้อมูลที่ต่อจากข้อมูลที่ถูกนำ ออกไป

3. Stack Top เป็นการคัดลอกข้อมูลที่อยู่บนสุดของสแตก แต่ไม่ได้นำเอาข้อมูลนั้นออกจากสแตก

*ตัวอย่างเข้าหลังออกก่อน*

เก้าอี้วางซ้อนกัน--คือ เมื่อเราเก็บเก้าอี้ เราจะนำตัวแรกไปวางก่อนแล้วนำตัวต่อไป ไปวางซ้อนกัน เมื่อเราจะหยิบใช้เราก็ต้องหยิบตัวที่เราเก็บหลังสุดมาใช้ก่อน

วันอาทิตย์ที่ 19 กรกฎาคม พ.ศ. 2552

DTS 04-15-07-2552

สรุปการเรียน

เรื่องลิงค์ลิสต์

ลิงค์ลิสต์ (Linked List) เป็นวิธีการเก็บข้อมูลอย่างต่อเนื่องของอิลิเมนต์ต่าง ๆ โดยมีพอยเตอร์เป็นตัวเชื่อมต่อแต่ละอิลิเมนท์ เรียกว่าโนด (Node) ซึ่งในแต่ละโนดจะประกอบไปด้วย 2 ส่วน คือ Data จะเก็บข้อมูลของอิลิเมนท์ และส่วนที่สอง คือ Link Field จะทำหน้าที่เก็บตำแหน่งของโนดต่อไปในลิสต์

- ในส่วนของ data อาจจะเป็นรายการเดี่ยวหรือเป็นเรคคอร์ดก็ได้ในส่วนของ link จะเป็นส่วนที่เก็บตำแหน่งของโหนดถัดไป ในโหนดสุดท้ายจะเก็บค่า Nullซึ่งไม่ได้ชี้ไปยังตำแหน่งใด ๆ เป็นตัวบอกการสิ้นสุดของลิสต์

- ในลิงค์ลิสต์จะมีตัวแปรสำหรับชี้ตำแหน่งลิสต์ (List pointer variable)ซึ่งเป็นที่เก็บตำแหน่งเริ่มต้นของลิสต์ ซึ่งก็คือโหนดแรกของลิสต์นั่นเอง ถ้าลิสต์ไม่มีข้อมูล ข้อมูลในโหนดแรกของลิสต์จะเป็นNull


โครงสร้างข้อมูลแบบลิงค์ลิสต์จะแบ่งเป็น 2 ส่วน คือ
1. Head Structure จะประกอบไปด้วย 3 ส่วนได้แก่ จำนวนโหนดในลิสต์ (Count) พอยเตอร์ที่ชี้ไปยังโหนดที่เข้าถึง (Pos) และพอยเตอร์ที่ชี้ไปยังโหนดข้อมูลแรกของลิสต์ (Head)
2. Data Node Structure จะประกอบไปด้วยข้อมูล(Data) และพอยเตอร์ที่ชี้ไปยังข้อมูลตัวถัดไป

- การแทรกข้อมูลลงในลิงค์ลิสต์ สามารถจะกระทำได้โดยการเปลี่ยนพอยเตอร์บางตัว และค้นหาข้อมูลใน ลิงค์ลิสต์ เพื่อหาตำแหน่งของโหนดที่มาก่อนโหนดที่ต้องการแทรก สิ่งสำคัญในการแทรกข้อมูลในลิงค์ลิสต์ คือ ลำดับการ เปลี่ยนพอยเตอร์

- การลบโหนดออกจากลิงค์ลิสต์ จะกระทำโดยการเปลี่ยนพอยเตอร์บางตัว เริ่มต้นก็จะต้องหาโหนดที่มาก่อน โหนดที่ต้องการลบ จากนั้นก็ทำการเปลี่ยนพอยเตอร์

วันศุกร์ที่ 10 กรกฎาคม พ.ศ. 2552

DTS 03-1-07-2552

สรุปการเรียน

pointer(พอยน์เตอร์)

pointer เป็นตัว แปรที่ใช้เก็บตำแหน่ง (แทนที่จะเก็บค่า) ของข้อมูล เช่น ตัวแปรหรือสมาชิกของอาร์เรย์เราใช้พอยเตอร์บ่อย ๆ ใน ภาษาซี เนื่องจากมันมีประโยชน์มากมาย เช่น เราสามารถใช้พอยน์เตอร์ในการ ส่งข้อมูลไปมาระหว่างฟังก์ชันกับจุดที่เรียกใช้ฟังก์ชัน ถ้ากล่าวให้เจาะจง ลงไปก็คือ พอยน์เตอร์ ทำให้ฟังก์ชันสามารถส่งค่ากลับคืนมาได้ หลายค่า โดยผ่านอาร์กิวเมนต์ของฟังก์ชันยิ่งไปกว่านั้น เรายังใช้พอยน์เตอร์ในการเรียกใช้ฟังก์ชันที่ถูกส่งมาเป็นอาร์กิวเมนต์ของ อีก ฟังก์ชันหนึ่งนั่น คือ เราสามารถส่งฟังก์ชันหนึ่ง เป็นอาร์กิวเมนต์ให้อีก ฟังก์ชันหนึ่งได้

การประกาศตัวแปร Pointer เราสามารถประกาศตัวแปร Pointer ได้โดยที่ตัวแปร Pointer ก็จะมีประเภทของตัวแปรตามแบบตัวแปร ปกติเช่น int,float การประกาศตัวแปร Pointer จะแตกต่างจากการประกาศตัวแปรแบบปกติ ตรงที่เวลาเราประกาศต้องมีเครื่องหมาย * นำหน้าชื่อตัวแปรด้วย เช่น
- int *A;
มีความหมายว่าตัวแปร A เป็นตัวแปร Pointer ที่สามารถชี้ไปที่ ที่อยู่ของตัวแปรที่เป็น int ได้
โดยปกติถ้าเราจะใช้ตัวแปร Pointer เราจะนิยมตั้งชื่อเพื่อสื่อความหมาย เช่น
-int *Poi;
การประกาศตัวแปร Pointer ในต่างประเทศจะนิยมให้เครื่องหมาย * อยู่ข้างหน้าประเภทของตัวแปร เช่น
-int* Poi;
แต่การประกาศแบบนี้อาจทำให้ดูสับสน และเข้าใจยากก็ได้ เพราะมีโปรแกรมเมอร์ C++ หลายคนคิดว่าถ้าเขียน Source code แบบนี้
-int* A,B,C;
จะเป็นตัวแปร Pointer ทั้ง 3 ตัว ซึ่งความจริงแล้ว จะเป็นตัวแปร Pointer ตัวเดียวเท่านั้นคือตัวแปร A ส่วน B และ C จะเป็นตัวแปร int ธรรมดา


เซ็ต(Set)

เป็นโครงสร้างที่ข้อมูลแต่ละตัวไม่มีความสัมพันธ์กันเลย ตัวดำเนินการของเซ็ต ประกอบด้วย


1.set intersection


2.set union


3.set difference

สตริง(String)

สตริง หมายถึง ชุด(array)ของตัวอักขระ(character) ที่เรียงต่อกัน สตริงจะเป็นคำหรือ ข้อความที่มีความหมาย ใน C++ ไม่มีชนิดข้อมูลประเภท string การกำหนด string คือการกำหนด เป็นอาร์เรย์ของข้อมูลชนิด char หลาย ๆ ตัวนำมาเชื่อมต่อกันเป็น string เช่น character 'C','o','m','p','u','t','e','r' เก็บไว้ในอาร์เรย์รวมเป็นข้อมูล string ซึ่งจะได้ข้อความ "Computer" ข้อมูล string เป็นได้ทั้งค่าคงที่(constant) และตัวแปร (variable)


วันจันทร์ที่ 29 มิถุนายน พ.ศ. 2552

DTS 02-24-06-2552

สรุป การเรียนการสอน


อาร์เรย์ หมายถึง กลุ่มของข้อมูล ที่มีชนิดของข้อมูลเป็นชนิดเดียวกัน การอ้างถึงกลุ่มของชุดข้อมูลนี้จะอ้างด้วยชื่อของตัวแปรเดียวกัน

1.อาร์เรย์มิติเดียว คือจะเก็บข้อมูลในแถวเดียวไม่ว่าจะเป็นแนวนอน หรือ แนวตั้ง ตัวแปร 1 ตัวจะสามารถเก็บค่าได้หนึ่งค่า หากเป็นตัวแปรแบบ Array ตัวแปรหนึ่งตัวจะสามารถเก็บค่าได้มากกว่า 1 ค่า
เมื่อมีการใช้งาน Array

2.อาร์เรย์หลายมิติ จะมี 2 มิติ หรือ 3 มิติ จะแตกต่างจากอาร์เรย์มิติเดียวตรงที่ตัวห้อย คือ ตัวห้อยของอาร์เรย์จะมีขนาดของแถวและขนาดของคอลัมม์มาเป็นตัวบอกจำนวนสมาชิกด้วย รูปแบบของอาร์เรย์มิติหลายมิติ

Structure คือ โครงสร้างข้อมูลที่มีประเภทข้อมูลแตกต่างชนิดกันได้ สมาชิกอาจเป็น จำนวนเต็ม ทศนิยม พอยเตอร์ ก็ได้ มื่อต้องการอ้างถึงตัวแปรในโครงสร้างของ structure จะใช้ . มาเป็นตัวอ้า


การบ้าน Structure

#include

struct date{

int day;

int month;

int year;
};

struct order {

char name[20];

char last_name[20];

char address[30];

char telephone;[12];

char type[20];

float price;

struct date paymoney;

}order1;

void input_data()

{

printf("order data\n");

printf("day dd=");

scanf("%d",&order1.paymoney.day);

printf("month mm=");

scanf("%d",&order1.paymoney.month);

printf("year yyyy=");

scanf("%d",&order1.paymoney.year);

printf("Name =");scanf("%s",&order1.name);

printf("Last name =");

scanf("%s",&order1.last_name);

printf("address=");

scanf("%s",&order1.address);

printf("telephone =");

scanf("%s",&order1.telephone);

printf("type=");

scanf("%s",&order1.type);

printf("Price =");

scanf("%f",&order1.price);

}

void show_data()

{

printf("Display Data of order\n");

printf("Day=%d-%d-%d\n",order1.paymoney.day,order1.paymoney.month,order1.paymoney.year);

printf("name= %s Last Name= %s\n",order1.name,order1.last_name);

printf("address=%s\n",order1.address);

printf("telephone= %s\n",order1.telephone);

printf("type=%s\n",order1.type);

printf("Price= %f\n",order1.price);}

main()

{

input_data();

show_data();

}

VDOแนะนำตัว

วันเสาร์ที่ 27 มิถุนายน พ.ศ. 2552

ประวัติส่วนตัว




นางสาวกาญจนา พิมพ์สอาด

Miss.Kanjana Pimsa-oad

ชื่อเล่น อุ๋ย ( oui )

รหัสนักศึกษา 50152792031

เกิดวันที่ 2 สิงหาคม 2532

อายุ 20 ปี

งานอดิเรก ดูหนัง ฟังเพลง

คติประจำใจ ทำวันนี้ให้ดีที่สุด

หลักสูตร การบริหารธุรกิจ (คอมพิวเตอร์ธุรกิจ)

คณะวิทยาการจัดการ มหาวิทยาลัยภัฎราชสวนดุสิต

E-mail u50152792031@gmail.com